Mutation in filamin A causes periventricular heterotopia, developmental regression, and West syndrome in males.
نویسندگان
چکیده
PURPOSE Familial periventricular heterotopia (PH) represents a disorder of neuronal migration resulting in multiple gray-matter nodules along the lateral ventricular walls. Prior studies have shown that mutations in the filamin A (FLNA) gene can cause PH through an X-linked dominant pattern. Heterozygotic female patients usually remain asymptomatic until the second or third decade of life, when they may have predominantly focal seizures, whereas hemizygotic male fetuses typically die in utero. Recent studies have also reported mutations in FLNA in male patients with PH who are cognitively normal. We describe PH in three male siblings with PH due to FLNA, severe developmental regression, and West syndrome. METHODS The study includes the three affected brothers and their parents. Video-EEG recordings and magnetic resonance image (MRI) scanning were performed on all individuals. Mutations for FLNA were detected by using polymerase chain reaction (PCR) on genomic DNA followed by single-stranded conformational polymorphism (SSCP) analysis or sequencing. RESULTS Two of the siblings are monozygotic twins, and all had West syndrome with hypsarrhythmia on EEG. MRI of the brain revealed periventricular nodules of cerebral gray-matter intensity, typical for PH. Mutational analyses demonstrated a cytosine-to-thymidine missense mutation (c. C1286T), resulting in a threonine-to-methionine amino acid substitution in exon 9 of the FLNA gene. CONCLUSIONS The association between PH and West syndrome, to our knowledge, has not been previously reported. Males with PH have been known to harbor FLNA mutations, although uniformly, they either show early lethality or survive and have a normal intellect. The current studies show that FLNA mutations can cause periventricular heterotopia, developmental regression, and West syndrome in male patients, suggesting that this type of FLNA mutation may contribute to severe neurologic deficits.
منابع مشابه
A filamin A splice mutation resulting in a syndrome of facial dysmorphism, periventricular nodular heterotopia, and severe constipation reminiscent of cerebro-fronto-facial syndrome.
BACKGROUND Mutations of the filamin A locus (FLNA) on Xq28 have been established in girls with periventricular nodular heterotopia and in patients with otopalatodigital and overlapping phenotypes, the pathogenesis of these phenotypes being thought to be quite distinct. To date only six male cases of periventricular nodular heterotopia (PVNH) have been reported and these almost invariably associ...
متن کاملGermline mosaicism in X-linked periventricular nodular heterotopia
BACKGROUND X-linked periventricular nodular heterotopia is a disorder of neuronal migration resulting from mutations in the filamin A gene. This is an X-linked dominant condition where most affected patients are female and present with seizures. Extra-cerebral features such as cardiac abnormalities and thrombocytopenia have also been documented. Loss of function mutations in filamin A are predi...
متن کاملCardiac malformations and midline skeletal defects in mice lacking filamin A.
The X-linked gene filamin A (Flna) encodes a widely expressed actin-binding protein that crosslinks actin into orthogonal networks and interacts with a variety of other proteins including membrane proteins, integrins, transmembrane receptor complexes and second messengers, thus forming an important intracellular signalling scaffold. Heterozygous loss of function of human FLNA causes periventric...
متن کاملAutosomal recessive form of periventricular heterotopia.
BACKGROUND Familial periventricular heterotopia (PH) represents a disorder of neuronal migration resulting in multiple gray matter nodules along the lateral ventricular walls. Prior studies have shown that mutations in the filamin A (FLNA) gene can cause PH through an X-linked dominant inheritance pattern. OBJECTIVE To classify cortical malformation syndromes associated with PH. METHODS Ana...
متن کاملAbnormalities of cortical development and epilepsy
− Malformations of the cerebral cortex (MCC) are often associated with severe epilepsy and developmental delay. About 40% of drug-resistant epilepsies are caused by MCC. Classification of MCC is based on embryological brain development, recognising forms that result from faulty neuronal proliferation, neuronal migration and cortical organisation. Hemimegalencephaly, an enlarged dysplastic hemis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Epilepsia
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2006